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Abstract. An adaptive estimation approach method is used for the on line identification of
hysteretic systems under arbitrary dynamic environment. The availability of such an
identification approach is indispensable for the on-line control and monitoring of nonlinear
structural systems to be actively controlled. The hysteretic restoring force is modeled by the
Bouc-Wen model, and the adaptive law insures that all signals will remain bounded. The
model is modified to produce a linearly parameterized estimator, which permits the on-line
prediction of the hysteretic behavior through recursive techniques.
The identification of the hereditary nature of the restoring force of this nonlinear system is a
significant challenge. However, it is shown through the use of simulation studies and
experimental measurements that the proposed approach can yield reliable estimates of the
hysteretic restoring force.
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1. INTRODUCTION

1.1. Background

Problems involving the identification of structural systems exhibiting inelastic restoring
force with hereditary characteristics are widely encountered in the applied mechanics field.
Examples include buildings under strong earthquake excitations or aerospace structures
incorporating joints. The restoring force in such systems is hysteretic in nature and therefore
cannot be expressed in the form of an algebraic function involving the instantaneous values of
the state variables of the system. Consequently, much effort has been directed to develop
models of hysteretic restoring forces and techniques to identify these systems. Noteworthy is
the work of Baber & Wen (1982), Andronikou & Bakey (1984), Spencer & Bergman (1985),
Powell & Chen (1986), Iwan & Cifuentes (1986), Wen & Ang (1987), Worden & Tomlinson
(1988), Capecchi (1990), Masri et al. (1991), Loh & Chang (1993), Benedettini et al. (1995),
and Chassiakos et al. (1995).

A principal need in actively controlling the nonlinear dynamic response of structural
systems undergoing hysteretic deformation is the need for rapid identification of the non-
linear restoring force. In this manner, the information can be used by online controlling
algorithm to adjust the actuator forces to insure stable response control of the oscillating



structure. Recently, (Housner & Masri 1990, 1993) and (Housner et al. 1995) showed that the
on-line identification of hysteretic restoring force is indispensable for the practical
implementation of structural control.

1.2. Scope

This paper presents a method for on-line identification of hysteretic systems under
arbitrary dynamic environments. First, the problem is formulated, and the on-line
identification algorithm is next presented. Simulation results of single degree of freedom
model is then presented to demonstrate the use and validity of the algorithm under test signals
that differ from those used for identification. Additionally, the identification approach is used
in experimental measurements in steel subassembly undergoing severe hysteretic
deformation. The advantages and limitations of this approach are finally compared to
alternative identification methods.

2. DYNAMICS AND MODEL

“Figure 1” shows a single-degree-of-freedom system. The dynamics of the system is
described by

  )(])(,)([)( tutxtxQtxm =+ ��� ,                                                                              ( 1 )

where )(tx  is the system displacement, )](,)([ txtxQ �  is the hysteretic restoring force and
)(tu  is the external excitation. The mass m  is assumed to be known, and the measurements

of )(tu  and )( tx��  are assumed measurable at time intervals st , s = 1, . .   . )(tx  and )( tx�  is
obtained at each time interval by measurement or integration of the acceleration signal.
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Figure 1- One-degree-of-freedom hysteretic system model

A restoring force with hysteretic characteristic is modeled by a non-linear differential
equation. The (Bouc-Wen, 1989) model is chosen to represent this force due to its ability to
capture the properties of a wide range of real non-linear hysteretic systems. The equation is
given by :
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Different combinations of the parameters γβνη ,,,, A  and n  produce smooth hysteresis
loops of various hardening or softening characteristics, and different amplitudes and shapes.

At a given instant ‘ s ’, we have :
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and the system equation of motion, “Eq. ( 1 )”, is rewritten as :

)()()()( sxmsuszsQ ��−== .                                                                       ( 5 )

“Equation (5)” indicates that the values of z  are available at each time interval st  by
using on-line measurements of x , x� , x�� and u . Therefore, having m , the on-line estimates of
the unknown parameters in “Eq. ( 3 )” are determined.

3.   ON-LINE IDENTIFICATION

The hysteretic model describing the restoring force,”Eq. (3)”, is given in terms of linearly
parameterized coefficients: { γνηβνηη )/1(,)/1(,)/1( A }, but is non-linear with respect
to the power n . Since a linearly parameterized on-line estimator is desirable, the model is
modified to include a totally linearly parameterized expression;
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where the value of coefficients na  determines the contribution of power n  to the hysteresis,
and n  is a large enough integer. For example, if power n  is 3, and N is chosen as 4, then the
coefficients 0421 === aaa  and 13 =a . Now, measurements are taken at discrete time

intervals st∆ , and “Eq. ( 6 )” is rewritten in a discrete-time version to read:
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This discrete-time model gives rise to the following discrete-time linearly parameterized
estimator :

+−+−= )1()()1()( 0 sxsszsQ �

�

θ

∑
=

=

−

− −−−
Nn

n

n

n szszsxs
1

1

12 )1(|)1(||)1(|)([ �θ

]|)1(|)1()(2

n

n szsxs −−+ �θ ,                                              ( 8 )

where the coefficients )( siθ , i  =  0, ....  2N are estimates at time st  of the corresponding

coefficients from “Eq. ( 7 )”, that is )(0 sθ  is an estimate of At )1( η∆ , )(12 sn −θ  is an

estimate of νβη )1()( nat∆− , and )(2 snθ  is an estimate of  νγη )1()( nat∆ .
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vector containing the true value of the parameters. The corresponding system measurements
at time st  are given by the vector :
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Therefore, the estimator model in ( 8 ) may be expressed as :
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and the estimation error is :
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where *)()(
~ θθθ −= ss  is the )12(( +N  X   1)  vector of parameter errors between the

actual and estimated values )( siθ .
From “Eq. ( 10 )” and using the techniques applied in adaptive estimation and control

(Ioamnou & Datta, 1991) ; (Polycarpou & Ioamnou, 1992), we adopt the following gradient
projection adaptation law :
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and 00 >γ is the learning rate of the algorithm and 00 >β  is a design constant. ||)(|| sφ
and ||)(|| sµ  are the Euclidean vector norms. θM  is an upper bound number on the norm

||*|| θ . This upper bound is easily found if some information about the order of magnitude of
the elements of *θ  is available.

In “Eq. ( 12 )”, the adaptive law is given as a function of the upper bound of the norm
||*|| θ  in order to avoid parameter drift which may drive the estimate )( sθ  to infinity and

lead to an unstable estimate scheme. The equation shows that if θµ Mk >||)(|| the estimate
of )( sθ  remains small in order to maintain the maximum of the norm ||)(|| kθ  equal to

θM and )( sθ will not converge to infinity.
The adaptive law of “Eq. ( 12 )” and “Eq. ( 13 )" guarantees that all the signals will

remain bounded and the error 0)( →se  as ∞→s , if the model in “Eq. ( 3 )” is a
good representation of the unknown system.

Since the hysteretic model in “Eq. ( 6 )” is a linearly parameterized estimator, recursive
on-line estimation techniques can be used and they provide fast identification and output
tracking. Other non-linear estimation techniques are disadvantageous since they either search
over the whole parameter space spanning a long period ( Masri et al. 1980 ) which renders the



technique enviable  as an on-line estimation techniques, or increase computational complexity
as in the technique based on the steepest descent ( Goodwin & Sin 1984 ).

The representation of the hysteretic model by “Eq. ( 6 )" increases the number of
estimated parameters as compared to the original model in “Eq. ( 3 )”. However, the unknown
power n  is relatively small ( typically an integer less than 4), and the total number of
parameters is as well relatively small. The system in “Eq. ( 3 )”, linearly parameterized is said
to be system identifiable under “Eq. ( 6 )”, and the algorithm of “Eq. ( 12 )” and “Eq. ( 13 )”
in the sense that the set of parameter vectors θ  that satisfy “Eq. ( 10 )” is nonempty. That is,
the on-line algorithm should converge to this parameter set. Because of over-
parameterization, this parameter set contains more than one point, and the convergence to a
unique parameter vector cannot be guaranteed. However, tracking of the output signal may be
performed even with an over-parameterized model.

4.    APPLICATIONS

Identification results from simulated one degree of freedom system and real data of a
hysteretic structure are presented to illustrate the applicability of the proposed on-line
identification algorithm. After the identification procedure is completed, the parameter values
are frozen at their final values. The identified model is validated and tested under various
levels of wide-band random excitation.

The identification scheme is next used to track the output of a system which is
phenomenologically different from the Bouc-Wen model, and it is seen to produce very good
agreement between the predicted and system outputs. Finally, actual testing data acquired
from a full-scale structural steel subassembly are used. The identification procedure is shown
to identify the hysteretic characteristics and perform very good output prediction.

4.1. Model characteristics

The identification procedure will refer to the hysteretic system of “Fig. ( 1 )”. The
following values were given to the model parameters of “Eq. ( 3 )” :

,1=η      ,1=A      ,1=ν      ,1=β      ,1=γ      ,1=n                                               ( 14 )

additionally, the system mass was taken as unity.

4.2. Experimental measurements

The experimental measurements for the external excitation )(tu  and acceleration )( tx��

are assumed to be available over a period much longer than the characteristic period of
interest. The corresponding system displacement )( tx  and velocity )( tx�  are determined by
direct measurement or integration of the acceleration signal. The measurements are
discretized at time increments )( t∆  ( in this case 0,1 second ), and the values of )( sQ are
obtained from “Eq. ( 5 )”.

Additionally, the method imposes no restriction on the nature of the excitation source
signal. In the case under study, the excitation used is the swept sign signal :

  ))2,003,0(()( ttsintu += .                                                                                      ( 15 )

The time-history records of the swept-time input excitation and response displacement
corresponding to the single degree of freedom excitation system is shown in “Fig. ( 2 )”.



Figure 2- Time-history records of the system excitation and response to a sinusoidal input

4.3. Identification of the hysteretic restoring force

The unknown parameter vector θ  is initially set to zero. A value of 3=n  and an upper

bound θM  = 1 are chosen. According to “Eq. ( 8 )”, the algorithm will estimate a total of
seven parameters. The on-line estimate of parameters 0θ  to 6θ is shown in “Fig. ( 3 )”.

Figure 3- On-line estimation of the identified hysteretic system
parameters, obtained through swept-sine-input excitation

In “Figure ( 4 )”, the on-line prediction of )(ˆ sQ (dashed line) is compared to the actual
value of ))(,)(( sxsxQ � (solid line). The phase plots of )(sz (solid line) and )(ˆ sz (dashed
line) versus )(tx  (horizontal axis) are shown in “Fig. ( 5 )”. The agreement between the
measured and identified hysteretic restoring force is extremely good over the whole domain of
the motion as observed from “Fig. (4)” and “Fig. ( 5 )”. That is, the algorithm is capable of
accurately replicating actual system motion immediately after the start of tracking. Only a few
time samples are required for the accurate tracking of the observed response. Even when the



identified parameters had not settled to their final value, their instantaneous combinations
were able to generate extremely good agreement within that range of local excitation.

Figure 4- Comparison between the measured, )( tQ , and identified, )(ˆ tQ ,
restoring force under a swept-sine wave excitation

Figure 5- Phase-plane comparison of the measured, )( tQ , and identified )(ˆ tQ
restoring force under a swept-sine wave excitation

4.4. Model Validation Procedure

The model identified in section 4.3 should be validated. The parameters 6....0, =iiθ
are frozen to the values obtained during the identification phase. The system is subjected to a
zero-mean-wide-band random excitation )(tu  of rms level 0σ , “Fig. ( 6 )”. Using the system

response data and the parameter values obtained under swept-sine excitation, the predicted



values of )(ˆ sQ  are computed. “Figure ( 7 )” shows a very good agreement between the actual

),( xxQ �  with the predicted Q̂  in spite of the adaptation algorithm being turned off. The phase
plane plots of z  (solid line) and ẑ  (dashed line) versus x  (horizontal axis) is shown in “Fig.
( 8 )”. Again, the agreement between actual and predicted values is very good. Similar results
are obtained when the level of excitation is 0σσ << , 0σ  being the random excitation level

used in previous validation test.

Figure 6- Time-record of system response under wide band random excitation of level 0σ

Figure 7- Time-record of the measured and predicted hysteretic restoring force under wide
band random excitation of level 0σ  and adaptive scheme turned off

“Figure ( 3 )” shows that the parameters reach a steady state after 20 ~25 seconds. This
corresponds to actual CPU time of 0.7 ~ 0.8 seconds, on a 60 MHz machine. This estimate
includes the time required to store the data in the φ  vector. In turn, the actual CPU time can
be reduced significantly on a faster machine. “Figure ( 4 )” shows that tracking and prediction
of the restoring force is performed much faster: The output tracking is achieved within few
cycles of iterations, corresponding to CPU of few milliseconds on the same 60 MHz machine.



Therefore, as an active control, the on-line prediction of the unknown restoring force is
achieved a lot faster than parameter convergence.

Figure 8- Phase plane plots of the measured and predicted hysteretic restoring force under
wide band random excitation of level 0σ  and adaptive scheme turned off

5.    DISCUSSION

In all simulations, the estimation scheme is very successful. Under the swept-sine input
wave, the model parameters converged within about six cycles. The convergence can be
considerably accelerated by introducing a persistent input excitation; for example, a wide-
band random excitation is ideal since it will fully excite the system to be identified.

In the present adaptive scheme, the variables affecting the learning rate and the parameter
bounds are chosen by trial and error, along with a priori knowledge of the approximate bound
on the norm of the system parameter vectors *θ . In this particular adaptive scheme, the
projection bound was not necessary in these simulations. Setting the learning rate too high
causes serious algorithm instability with this projection method because the parameters are
continuously pushed far outside the bounded parameter space and projected back to the bound
at each time step. Other adaptive schemes may contain adaptive learning rates and prove to be
more successful.

6.    CONCLUSIONS

A method is presented for the on-line identification of hysteretic systems under arbitrary
dynamic environment. It is shown through the use of simulation studies that the proposed
approach can yield reliable estimates of the hysteretic restoring force under a very wide range
of excitation levels and response ranges. The method is ideally suited for on-line control
applications involving time-varying non-linear systems typically encountered in the applied
mechanics field.
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